搜索
新闻详情

什么是SRAM(静态存储器)?

新型存储之MRAM资讯

82
发表时间:2022-12-01 09:08作者:全球芯 | glochip.com来源:Netsol | MRAM | SRAM网址:http://glochip.com/news/

SRAM不需要刷新电路即能保存它内部存储的数据。而DRAM(Dynamic Random Access Memory)每隔一段时间,要刷新充电一次,否则内部的数据即会消失,因此SRAM具有较高的性能,但是SRAM也有它的缺点,即它的集成度较低,功耗较DRAM大 [1] ,相同容量的DRAM内存可以设计为较小的体积,但是SRAM却需要很大的体积。同样面积的硅片可以做出更大容量的DRAM,因此SRAM显得更贵。 [2]


一种是置于cpu与主存间的高速缓存,它有两种规格:一种是固定在主板上的高速缓存(Cache Memory);另一种是插在卡槽上的COAST(Cache On A Stick)扩充用的高速缓存,另外在CMOS芯片1468l8的电路里,它的内部也有较小容量的128字节SRAM,存储我们所设置的配置数据。还有为了加速CPU内部数据的传送,自80486CPU起,在CPU的内部也设计有高速缓存,故在Pentium CPU就有所谓的L1 Cache(一级高速缓存)和L2Cache(二级高速缓存)的名词,一般L1 Cache是建在CPU的内部,L2 Cache是设计在CPU的外部,但是Pentium Pro把L1和L2 Cache同时设计在CPU的内部,故Pentium Pro的体积较大。Pentium Ⅱ又把L2 Cache移至CPU内核之外的黑盒子里。SRAM显然速度快,不需要刷新操作,但是也有另外的缺点,就是价格高,体积大,所以在主板上还不能作为用量较大的主存。 [2]


SRAM主要用于二级高速缓存(Level2 Cache)。它利用晶体管来存储数据。与DRAM相比,SRAM的速度快,但在相同面积中SRAM的容量要比其他类型的内存小。
SRAM的速度快但昂贵,一般用小容量的SRAM作为更高速CPU和较低速DRAM 之间的缓存(cache).SRAM也有许多种,如AsyncSRAM (Asynchronous SRAM,异步SRAM)、Sync SRAM (Synchronous SRAM,同步SRAM)、PBSRAM (Pipelined Burst SRAM,流水式突发SRAM),还有INTEL没有公布细节的CSRAM等。
基本的SRAM的架构如图1所示,SRAM一般可分为五大部分:存储单元阵列(core cells array),行/列地址译码器(decode),灵敏放大器(Sense Amplifier),控制电路(control circuit),缓冲/驱动电路(FFIO)。SRAM是静态存储方式,以双稳态电路作为存储单元,SRAM不像DRAM一样需要不断刷新,而且工作速度较快,但由于存储单元器件较多,集成度不太高,功耗也较大。 [2]
RAM的工作原理:
假设准备往图2的6T存储单元写入“1”,先将某一组地址值输入到行、列译码器中,选中特定的单元,然后使写使能信号WE有效,将要写入的数据“1”通过写入电路变成“1”和“0”后分别加到选中单元的两条位线BL,BLB上,此时选中单元的WL=1,晶体管N0,N5打开,把BL,BLB上的信号分别送到Q,QB点,从而使Q=1,QB=0,这样数据“1”就被锁存在晶体管P2,P3,N3,N4构成的锁存器中。写入数据“0”的过程类似。
SRAM的读过程以读“1”为例,通过译码器选中某列位线对BL,BLB进行预充电到电源电压VDD,预充电结束后,再通过行译码器选中某行,则某一存储单元被选中,由于其中存放的是“1”,则WL=1、Q=1、QB=0。晶体管N4、N5导通,有电流经N4、N5到地,从而使BLB电位下降,BL、BLB间电位产生电压差,当电压差达到一定值后打开灵敏度放大器,对电压进行放大,再送到输出电路,读出数据。 [2]

非挥发性SRAM

非挥发性SRAM(Non-volatile SRAM,nvSRAM)具有SRAM的标准功能,但在失去电源供电时可以保住其数据。非挥发性SRAM用于网络、航天、医疗等需要关键场合—保住数据是关键的而且不可能用上电池。

异步SRAM

异步SRAM(Asynchronous SRAM)的容量从4 Kb到64 Mb。SRAM的快速访问使得异步SRAM适用于小型的cache很小的嵌入式处理器的主内存,这种处理器广泛用于工业电子设备、测量设备、硬盘、网络设备等等。

根据晶体管类型分类

  • 双极性结型晶体管(用于TTLECL)—非常快速但是功耗巨大
  • MOSFET(用于CMOS)—本文详细介绍的类型,低功耗,现在应用广泛。

根据功能分类

  • 异步—独立的时钟频率,读写受控于地址线与控制使能信号。
  • 同步—所有工作是时钟脉冲边沿开始,地址线、数据线、控制线均与时钟脉冲配合。

根据特性分类

  • 零总线翻转(Zero bus turnaround,ZBT)—SRAM总线从以及从所需要的时钟周期是0
  • 同步突发SRAM(synchronous-burst SRAM,syncBurst SRAM)—
  • DDR SRAM—同步、单口读/写,双数据率I/O
  • QDR SRAM(Quad Data Rate (QDR) SRAM)—同步,分开的读/写口,同时读写4个字(word)。

根据触发类型

  • 二进制SRAM
  • 三进制计算机SRAM [2]

特性

SRAM是比DRAM更为昂贵,但更为快速、低功耗(仅空闲状态)。因此SRAM首选用于带宽要求高。SRAM比起DRAM更为容易控制,也更是随机访问。由于复杂的内部结构,SRAM比DRAM的占用面积更大,因而不适合用于更高储存密度低成本的应用,如PC内存。
时钟频率与功耗
SRAM功耗取决于它的访问频率。如果用高频率访问SRAM,其功耗比DRAM大得多。有的SRAM在全带宽时功耗达到几个瓦特量级。另一方面,SRAM如果用于温和的时钟频率的微处理器,其功耗将非常小,在空闲状态时功耗可以忽略不计—几个微瓦特级别。
SRAM用于:
  • 通用的产品
    • asynchronous界面,例如28针32Kx8的chip(通常命名为XXC256),以及类似的产品最多16 Mbit每片
    • synchronous界面,通常用做高速缓存(cache)以及其它要求突发传输的应用,最多18 Mbit(256Kx72)每片
  • 集成于芯片内
    • 作为微控制器的RAM或者cache(通常从32 bytes到128kilobytes)
    • 作为强大的微处理器的主caches,如x86系列与许多其它CPU(从8kiB到几百万字节的量级)
    • 作为寄存器(参见寄存器堆
    • 用于特定的ICs或ASIC(通常在几千字节量级)
    • 用于FPGACPLD
嵌入式应用
工业与科学用的很多子系统,汽车电子等等都用到了SRAM。现代设备中很多都嵌入了几千字节的SRAM。实际上几乎所有实现了电子用户界面的现代设备都可能用上了SRAM,如玩具。数码相机、手机、音响合成器等往往用了几兆字节的SRAM。 实时信号处理电路往往使用双口(dual-ported)的SRAM。
用于计算机
SRAM用于PC、工作站、路由器以及外设:内部的CPU高速缓存,外部的突发模式使用的SRAM缓存,硬盘缓冲区,路由器缓冲区,等等。LCD显示器或者打印机也通常用SRAM来缓存数据。SRAM做的小型缓冲区也常见于CDROM与CDRW的驱动器中,通常为256 KiB或者更多,用来缓冲音轨数据。线缆调制解调器及类似的连接于计算机的设备也使用了SRAM。
爱好者
搭建自己的处理器的业余爱好者更愿意选用SRAM,这是由于其易用性的工作界面。没有DRAM所需的刷新周期;地址总线与数据总线直接访问而不是像DRAM那样多工分别访问。SRAM通常只需3个控制信号:Chip Enable (CE), Write Enable (WE)与Output Enable(OE)。对于同步SRAM,还需要时钟信号(Clock,CLK)。 [4]


文章分类: SRAM
分享到:
首页                                    产品展示                                        行业资讯                                   关于我们                                        联系我们
联系电话:
0755-84828852  
0755-84866816

联系方式: 手机号码:13924642346  13872769588
                13924649321  13928483205 联系邮箱:kevin@glochip.com
公司地址:
广东省深圳市龙岗区大运软件小镇1栋401室
(3号线,14号线,16号线,33号线)
网址:www.glochip.com   www.chip.com.cn
全球芯微信公众号
加密芯片 华芯微特   艾迪科泰    博雅科技    恒烁半导体    补丁科技    晶存科技   华大电子    康盈半导体     三星半导体   海力士  镁光科技     南亚科技  铠侠  金士顿   Skyhigh  Netsol
MCU  SRAM MRAM SDRAM DDR1 DDR2 DDR3 DDR4 DDR5 LPDDR3 LPDDR4 LPDDR4X LPDDR5 LPDDR5X NAND NOR eMMC UFS eMCP uMCP